a2 United States Patent

Savage et al.

US009262608B2

US 9,262,608 B2
*Feb. 16, 2016

(10) Patent No.:
(45) Date of Patent:

(54) SYSTEM FOR PROVIDING SESSION-BASED
NETWORK PRIVACY, PRIVATE,
PERSISTENT STORAGE, AND
DISCRETIONARY ACCESS CONTROL FOR
SHARING PRIVATE DATA

(71) Applicant: Ponoi Corp., New York, NY (US)

(72) Inventors: Colin Savage, New York, NY (US);
Christopher Petro, New York, NY (US);
Sascha Goldsmith, Brighton, MA (US)

(73) Assignee: Ponoi Corp., New York, NY (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

(21) Appl. No.: 14/341,099

(22) Filed: Jul. 25, 2014
(65) Prior Publication Data
US 2014/0337624 Al Nov. 13,2014

Related U.S. Application Data

(60) Continuation of application No. 14/038,513, filed on
Sep. 26, 2013, now Pat. No. 8,826,021, which is a
division of application No. 12/206,079, filed on Sep. 8,
2008, now Pat. No. 8,572,119, which is a division of

(Continued)
(51) Imt.ClL
HO4L 29/00 (2006.01)
GO6F 2131 (2013.01)
(Continued)
(52) US.CL
CPCcccceee. GO6F 21/31 (2013.01); GOGF 21/62
1101~ 1102

1103
N

(2013.01); GOGF 21/6227 (2013.01); GO6F
21/78 (2013.01); G0O6Q 20/383 (2013.01);
HO4L 63/0407 (2013.01)
(58) Field of Classification Search
CPC ... GOG6F 21/78; GOGF 21/62; GOGF 21/31,
GOG6F 21/6227; G06Q 20/383; HO4L 63/0407
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,748,739 A 5/1998 Press
5,909,491 A 6/1999 Luo
(Continued)
OTHER PUBLICATIONS

Goldberg, et al., “Freedom Network 1.0 Architecture and Protocols,”
Zero-Knowledge Systems, Inc., Nov. 29, 1999.

(Continued)

Primary Examiner — Michael Pyzocha
(74) Attorney, Agent, or Firm — Foley Hoag LLP; Erik A.
Huestis

(57) ABSTRACT

The invention provides secure and private communication
over a network, as well as persistent private storage and
private access control to the stored information, which is
accomplished by imposing mechanisms that separate a user’s
actions from their identity. The system provides (i) anony-
mous network browsing, in which event the anonymity sys-
tem is unaware of both the user’s identity and browsing activi-
ties, (ii) private network storage and retrieval of data such as
passwords, profiles and files in a manner such that the data can
be stored into the system and later retrieved without the sys-
tem knowing the contents or owners of the data, and (iii) the
ability of the user to control and manage access to the
remotely stored data without the system knowing the con-
tents, owners, or accessors of the data.

4 Claims, 22 Drawing Sheets

™

Mo7~¢ User Objects
106~ Database
108~ Message Queue
L Data Storage
11091 =

N~

US 9,262,608 B2
Page 2

Related U.S. Application Data

application No. 10/695,507, filed on Oct. 28, 2003,
now Pat. No. 7,437,550, which is a continuation of
application No. PCT/US02/08275, filed on Apr. 19,
2002, which is a continuation-in-part of application
No. PCT/US00/30168, filed on Nov. 30, 2000, and a
continuation-in-part of application No. 09/453,239,
filed on Dec. 2, 1999, now Pat. No. 6,442,687, said
application No. PCT/US00/30168 is a continuation of
application No. 09/453,239, filed on Dec. 2, 1999.

(60) Provisional application No. 60/285,200, filed on Apr.

20, 2001.
(51) Imt.ClL
G06Q 20/38 (2012.01)
HO4L 29/06 (2006.01)
GO6F 21/62 (2013.01)
GO6F 21/78 (2013.01)
(56) References Cited

U.S. PATENT DOCUMENTS

5,923,885 A 7/1999 Johnson et al.
5,961,593 A 10/1999 Gabber et al.
5,966,705 A 10/1999 Koneru et al.

6,061,448
6,088,799
6,195,432
6,230,269
6,353,661
6,385,596
6,397,261
6,442,687
6,564,321
6,615,218
6,985,953
7,756,986
8,006,307
2002/0026345
2003/0188150

A 5/2000 Smith et al.
A 7/2000 Morgan et al.
Bl 2/2001 Takahashi et al.
Bl* 5/2001 Spiesetal. ...c..ccoouennen 713/182
Bl 3/2002 Bailey
B1 5/2002 Wiser et al.
Bl 5/2002 FEldridge et al.
Bl 8/2002 Savage
B2 5/2003 Bobo
B2 9/2003 Mandal et al.
B1 1/2006 Sandhu et al.
B2 7/2010 Blumenau et al.
Bl* 82011 Klebeceoveevnnnn 726/26
Al 2/2002 Juels
Al 10/2003 Ohkado et al.
OTHER PUBLICATIONS

Mark Grennan, “Firewall and Proxy Server HOWTO,” http://www.
grenna.com/Firewal-HOWTO.txt, vol. 70 Oct. 19, 1999, web site
printout dated May 25, 2000.
Michael K. Reiter and Aviel D. Rubin, “Crowds: Anonymity for Web
Transactions,” http://www.research.att.com/projects/crowds/, Tech-
nical paper link of AT&T Labs-Research, web site printout dated

May 25, 2000.

Zero Knowledge, “Partner Programs, F.A.Q. (frequently asked ques-
tions),” http://www.zeroknowledge.com/partners/aip.asp, web site
printout dated May 25, 2000.

* cited by examiner

US 9,262,608 B2

Sheet 1 of 22

Feb. 16, 2016

U.S. Patent

LYV HORId
Il "Old
YIAYIS dLLH
ALHVd QYIHL
35vaviva 061 ¥IAY3S
7T O¥i—~ AxOud
SINYYOOYd TNOLLdOY)
2 SIdIHOS 08! 8L
A99] | st «_mﬁ /
S8 gs300Md ﬁ el
¥aAYIS gam 04t 0L~
091 ISNOSTY dLLH
L B GL)
GLI Gcl 1INY3LNI 183N03Y dLIH
]
mewmm oL
ISNOJSTY
dLIH 05}

A

001

US 9,262,608 B2

Sheet 2 of 22

Feb. 16, 2016

U.S. Patent

WYHOVIQ LINGILNI I1dNVYX3
VIOl

e T o s S S

| elep |

S T o R e B e e S O A e
elep

+
+

}.
+
+
4+
+
+
+
+
+

-
+
+
+
+
+

B wdor s el snci wprdion e
BLAE A At ARt Al)

-
e

3
¥

+
+
3
g
+

U S
T

+
+
+

P8
o
= - —fe—

L
r

mwmsum c.o_wméw m

SSaIPPE 82IN0S
JFVSSPISUFINSP AN WA W ST SRS WA WA WY WS W S ST S SO A SHSU SO S SR R A
_ Es@_om% Jepe mc) mmp mEF

Jened- b F ;-, -l b
L] L}

I c ﬁmm,co EmEmmt

e N TR WO SUNN WOTGN WD S N
¥ Ok

*.
-
+
-
o
S
+
-
-
+
+
+

U VISUUE SN SUNU SN SUUDE N SR WY GRS Sp 5 SN TR WRRUR SONE NUNDH SUNUS SN W WORpE
| AANAE Madh Al SAAL B Ml M) L) 1]

L At Ml S |

L o

i
¥ d‘ -

_ %7 = bl [E10]

e i SR U GNP SR D | R
T

== -
+
+
b
+=+—+—

3
c
q’-
wn
-p..aub
@
+ O
-h’_

+
-
+-
+
+

3 3
L] ¥

_mmdwomvmm,mmwnmmvmmrmmmmo peel

US 9,262,608 B2

Sheet 3 of 22

Feb. 16, 2016

U.S. Patent

ALHVd
aHiHL

1ea|d uonoy
‘aJes (f

>.me NOILOY

*1ea|o UoNoY
Sle ‘ojes di

00¢

“1s3nday zm_hz

G9¢

H3IAH3S
NOLLOV

NOILJV

_\omm 162

_ "9jes uonoy
M '9Jes (Qj
| >._n_\um NOILOY 00z
H3AY3S . 5
|| Allinaar | ose s vomy
_ #mm:omq NOILOV
“mmw 522
| ALIIN3AI

US 9,262,608 B2

Sheet 4 of 22

Feb. 16, 2016

U.S. Patent

Aldvd
ddiHL

s]| vanuas | wanuas ||

oGt

€ Ol
?
H a0t 3013WW0) ”
B 108 /S suonoesuel| _
- 908 /S Auoyaajey |
" s’
- »0E / 1gjsuel)abeiolg a4 !
 eoe” lew3
NomeEo%mmn_ yum buismolg qap
) J buismoig qom |
10€

2S¢

it NOILLOV [lALuNaal] |

162 |

Yo

00€

US 9,262,608 B2

Sheet 5 of 22

Feb. 16, 2016

U.S. Patent

¥ "Old

(Ao angnd

S JONISS UONDY YIM
peldAus uoloe)
it Al

09¢

ALHYd
(4IHL

GOz (paydhious
-Un uoye)
U0y

152
RN ERY

ALUNAAI

(fex yond
SJBAIBS UOIDY YU
pajdAioua uooe)

Voo -lowy

(fo
aqnd s Janiag Ajuap|
i peydAuoua Aguep)

vVioy -Enpwpy

252

43AG3S
NOILOY

%\oom

US 9,262,608 B2

Sheet 6 of 22

Feb. 16, 2016

U.S. Patent

G 'Old
(Ao anand s enpipu
upm paydAioua __
J\ 0EC—] asuodsal uogoe) 150
. -asuodsay uonay HIAH3S
Q\S« (Ao ayqnd s enpinipul AINAd
tm pajdiious figuap))
q10v -enpipy|
0ce (Aoy aygnd —
S JenpiIpUl L 352 Tz 0%
paidiious |) d .
asuodsaz uonoe) [H3AH3S %.mwwwe Nwﬁw_w * m%%
-asuodsay uonay NOLLOY asu0dsay Uy

US 9,262,608 B2

Sheet 7 of 22

Feb. 16, 2016

U.S. Patent

9 "Old
e
e P ke 5
_
006— ALLLN3al
ALMIOVH
HIAYIS dLIH
ALHVd QHIHL AOVAIHd
H3AH3S | ol
gam | %

191

057 L3INYILINI

Ok~

909

1T1ddV VAT
g3IM

U.S. Patent Feb. 16, 2016 Sheet 8 of 22 US 9,262,608 B2

USER (200) DOWNLOADS
JAVAAPPLET CLIENT (606)

710

y

ASETS BROWSER (108)
72
PROXY SETTING TO POINT [22
TO JAVAAPPLET (606)

|

JAVAAPPLET CREATES
PUBLIC-PRIVATE KEY PAIR

4

JAVAAPPLET (606) RECEIVES
IDENTITY SERVER'S (251) |—740
PUBLIC KEY

\ 4

JAVA APPLET (606) ENCRYPTS

ITS PUBLICKEYWITH ~ {—750
INDENTITY SERVER'S (251)

PUBLIC KEY AND TRANSMITS
TO IDENTITY SERVER (251)

730

IDENTITY SERVER (261) ENCRYPTS
ACTION SERVER'S PUBLIC KEY WITH 760
JAVAAPPLET'S (606) PUBLIC KEY AND

TRANSMITS TO JAVA CLIENT (606)

A

JAVA APPLET (606) ENCRYPTS ITS
PUBLIC KEY WITHACTION SERVER'S (252)—770
PUBLIC KEY AND TRANSMITS TO ACTION
SERVER (252) VIA IDENTITY SERVER (251)

FIG. 7
SESSION INITIALIZATION

U.S. Patent Feb. 16, 2016 Sheet 9 of 22 US 9,262,608 B2

JAVA APPLET CLIENT (606) MONITORS| _g1(
BROWSER'S (165) /0 STREAM

!

JAVAAPPLET CLIENT (606)

PARSES IDENTITYAND |—820

ACTION INFORMATION FROM
HTTP REQUEST (125)

A 4

JAVA APPLET CLIENT (606) CREATES 830
SEALED OBJECTCONTAINING
PARSED ACTION INFORMATION
ENCRYPTED WITH ACTION
SERVER'S (252) PUBLIC KEY

Y

JAVAAPPLET CLIENT (606) CREATES 840

SEALED OBJECTCONTAINING

PARSED IDENTITY INFORMATION
ENCRYPTED WITH IDENTITY
SERVER'S (251) PUBLIC KEY

JAVA APPLET CLIENT (606) SENDS 850
BOTH SEALED OBJECTSTOTHE [
IDENTITY SERVER (251)

IDENTITY SERVER (251) FORWARDS 860
THE SEALEDACTION OBJECT [
TO ACTION SERVER (252)

y

ACTION SERVER (252) DECRYPTS
HTTP REQUEST AND FORWARDS | 870
TO HTTP SERVER (160)

FIG. 8
REQUEST TRANSMISSION

U.S. Patent Feb. 16, 2016 Sheet 10 of 22 US 9,262,608 B2

ACTION SERVER (252) RECEIVES HTTP|__g10
RESPONSE FROM HTTP SERVER

ACTION SERVER (252) ENCRYPTS
HTTP RESPONSE WITH JAVA |—920
APPLET CLIENT'S (606) PUBLIC KEY

Y

ACTION SERVER (252) FORWARDS 930
ENCRYPTED HTTP RESPONSE TO [~
IDENTITY SERVER (251)

v

IDENTITY SERVER (251) FORWARDS 940
ENCRYPTED HTTP RESPONSETO [~
JAVAAPPLET CLIENT (606)

Y

JAVAAPPLET CLIENT (606) DECRYPTS
HTTP RESPONSE AND FORWARDS TO |—950
BROWSER (105) FOR DISPLAY

FIG. 9
RESPONSE TRANSMISSION

JAVAAPPLET CLIENT (606) 1010
PURGES PUBLIC-PRIVATE KEY PAR|—

Y

JAVAAPPLET CLIENT (606) RESETS
BROWSER (105) PROXY SETTINGS |—1020
TO PREVIOUS VALUES

FIG. 10
SESSION TERMINATION

US 9,262,608 B2

Sheet 11 of 22

Feb. 16, 2016

U.S. Patent

TN

abelo)g elRQ 60tk
ananp) abessaN NgoLL
aseqgeleq 0oLl
s109[qO Jasn NJoLL
[,I\\\\\
JanIBg JEVVETS
uonoy Ayjuap|
=o= | =So=
=0= =0=
—
—
—1
=
GoLL

b} aunbig

Jaindwon Jasn

RN —]

m >
[

vVvvvv.vavm
]

US 9,262,608 B2

Sheet 12 of 22

Feb. 16, 2016

U.S. Patent

MVY : anjea-
CHYHOUVA : PI-

sanjen” wWojsAs

Z1L 2unbiy
mo._maNSmn.
MYY : Jeydluous- _
YIGNWNN : Way- <SeH
MY : J0je00}- -0
sabessapy

8019 : sbumes oydhio-
MVY : JeydAoua-

MV : JayuaA-

MV : J0je00}-

<SUMQ
170

ananp

8078 : elep+
90719 : uonlasse+
MVY : 8nanb+

MVYY : Jojeooj+

329fq0

[2po eleq (221607

US 9,262,608 B2

Sheet 13 of 22

Feb. 16, 2016

U.S. Patent

g1 ainbi4

Bus : memme

leYysspy
<<SSeP
uonejuawaduii>>

(u1 : enjepuorssiuved up ‘Bulys : sajueb Ul ‘e|puBHUOIIBSSY : 8jpuBY U ‘0dA | pI1003) : 804 u))ebasseppuesy
Buoj : (Buof : epueHSS8208E UI)oNRS}H

Buoy : (Jfansepi

(eumosyuedoy

Buoy : (Jusdoy

(Buu)s : eexjorat ul)exoAely

(buLns : suoissuued uy ‘uws : Jusidioal uAypows
(Buiys : suosssiuued uf ‘BuLys : Juardipas ul)uribs
Buws : (meins

Buoy : (Jeres+

elgouselsisied . (Jysaials

Duoissagies+

Buws : (Jypecireb+

uono8j100) : (Nuess)eb+

buyg : (Jewepnjobs+

Buws : ixsuonjebs

BOBUDU|UOISSAS JUBISURY) | UOISSOSE
uop09)|0D Judjsuey : Juaseds
o|qejysey : ssnquie-
PI0OBHUOIUBSSY © PIODDIR

buuis : sweuy

302iqOyualsisiod
<<SseP uonrjuswo|dullss>

spelqo eleq wald

US 9,262,608 B2

Sheet 14 of 22

Feb. 16, 2016

U.S. Patent

(buwys : aweu upIyOPPB+

JoBeuepdnoss
<<SSsejo uojejuswsdwi>>

(Buwys : eweu Uy)eli4meu+
Buoj : (Jeres+
108lqouelsIsIod : () ysayels
Oixepuonjob+

(pauoo) g 8unbig

uono9jjonIeuL|
<<SSE)D uoyejuBwWadwi>>

[Jbups © (JsewepIeqUIBL+

(Bus : sweU UIBQUISNBAOWAIY
(buwys : eweu ulequispppE+

Buy;s : ()buLyso)+

foIs) - (BUljS . ewed ujjaouejsujmal+

(Buuys : eweu u)eaoweauty

pioosyuoiuessy : (Buuys : eweu ui)jebi
j108lgoIus]sIsIod : pityd ul ‘Buws : eweu ul ‘Ut : 80A) ul)ejee.dy
(buwns : eweu uj)oji46A0WEI+

(Buu)s : swsu uj)e|i43ob+

(buwys : sweu uj)ejiippe+

(Buuys : eweu uPPIYDINOWEI+

(Buns : eweNMeu Ul ‘Buujs : sweNp[o u)pjlypaweuals
[6uus : ()sewenpiyOIeB+

ur : QpunoopliyO3ebs

j08lqouejsisied : (piyD31eb+

buujs : Qbuusol+

(buy;s : eweu upjiyoppe+

Buuys : ()1xspuoDeb+

S|qejyseH - UaIpiyo

ojqejuseH : siaqsw-

‘ uond8l|0d
<<SSEJQ uopejuswadwi>>

dnous)

US 9,262,608 B2

Sheet 15 of 22

Feb. 16, 2016

U.S. Patent

(pauod) ¢} aanbiy

Jun : (JanjepuoissiuIddiobs

buus : Oypedieb+

Ul : anjepuoissiwad-
Buws : yyed-

A1oysiHueID
<<SSEJO Uoieuswadwl>>

Apuepy : (muaplebs
buu;s : (JeweNeb+

(=aAq : Anuepi-
fuuyg : sweu-

JequioN

(Auepy : Aiuepr uAipuepljes-

jooq : (jJuaus) : eBessew uj)ebessapyssodoids

()sebessepeb-

(buys : yed uy ‘Buyis : eweu u)AIOISIHIURIOBAOWAH
<peyoadsuns : (Bus : yied ur ‘BuLgs : eweu u)AIos|HueID}ObH
(u1 :anjepuorssiuued uf 'f] e)fq : Anueps ul ‘BulsS : yyed ul ‘Bul)s : eweu un)AIo)SIHIUBIOPPE
Anuep) : (Amuepjjebs+

vonoajjonieuu| : (Jpaumoieb+
JobBeuepdnoun) : (Jsdnausieb+

"[6uns : ()seweNpyDIeb+

jur : (yunoopiu0ieb+

uopooyioD : (Buws : ewsu u)ppyD18b+
Buoj : (Jeres+

Buus : ()Buys o)+

«oumb&&:oﬁmmw UOISSBS UIJUDISSESIOS+

s|qejyseH : payesb-
UOI}03}j0DI8UL| © PAUMO-
uoij98jj0DI8UY| [paJeys-
1obeuepdnolg : sdnoib-
fuap) : Apuaepl-

iosn
<<SSejo Uoneuawa|dui>>

US 9,262,608 B2

Sheet 16 of 22

Feb. 16, 2016

U.S. Patent

1 anbig

{ioensqe) eseus)ujuOiLESSY | (Juoluessyieb+

{ioensqE} 108QOIUSISIOY | (S0BLBIUHICISSES | LOISSDS UHOBlgO0)+

{iorysqe} pIooexUOILBSSY | (BlpuUBI{UCRISSSY | ipury u)sjepdns

pI009X0BIq0 © (e0BLBIUIUCISSES [UOISSES Ul ‘Bulys : sweu U} ‘edAj picoss : 8dA) uijejesios
Buoj : (eogusiuuoisses : uoissas w ‘buoj : yibusy up ‘weeangnduy Ul uWeanSIes
{eopueUIUOISSES | UOISSES Ul ‘weanSinding : o ujwesngieb+

(Bung : sway uljenquYyYeAoWRL

(Buys : anjea w 'Bulls © awel uaINGURYIes+

JBus : (Jsewenenquyviabs

Buws : Qeinquyyiebs

Buwg : ()Busoys

(sbumegojdAs ; sbumpes ul)oydliDas+

sBumesoydAiy : (JoydAipyebs

edApiooes ; (JedA eBs

(buLs : swey U)eWBNISS+

Buuys : (Jsweniebs

S|qeyseH : senquye-
sbugegoidhiy : sbuyes-
Oaiiq : ssydAioue-

[le1Aq : seydAiodp-

adAf piooas : adhiy-

Suuig : sweu-

pJoosyejeq
<<$se uonejuswsdwis>

s108[G0 pIoooy Bjeq wald

US 9,262,608 B2

Sheet 17 of 22

Feb. 16, 2016

U.S. Patent

(pauod) pi aunbig

Joelqojuejsisied

: (8oBB)UILOISSDS UOISSBS U} 'SSBID ! J08IQOSSBID UI)pBaL

eoeuBUIUOIIBSSY | (JUOILDSSY}ob+
J00lqoiue)sisio : (e0BOUIUOISSOS : UOISSES Ul)joelgOo+
RIOSBXUOILIBSSY : (8]pUBIJUOISSSY | sjpurY Ul)erepdns+

208}19JUJUOIUBSSY © UoIIaSSe-

eogueUjUOIUeSSY : (JuoluesSyeb+

109/qOUa}SISIa ;| (80BUBJUILOISSAS | UOISSOS UI)1o8lqO0)+
pl038}UOILBSSY : (BlpuBHUOLBSSY | BjpuRyYy Ul)e)epdn4+
Buo) : (e0pUUILIOISSOS | UOISSOS UL)OABS+
(208LBUIUOISSES : UDISSES UI)pRAI+

Buoy : (eoBue)UIUOISSES © UOISSES Ul)AasSep+

Buoy : ()ybueebs

Buwys : (ewepnjeoiuousD)obs

piooax100lq0
<<SSe uogejuawaidwi>>

Buo) : ybue|-
B0BHB)UUOILBSSY | UolJasse-

plodayajd
<<SSED uoneuswaldwi>>

US 9,262,608 B2

Sheet 18 of 22

Feb. 16, 2016

U.S. Patent

(P3uod) $| aunbiy

6uuys : ()buLysol+
i : (Janjgpuosssiuusgeba
Bus - Quoydusseqrebs
Buys : (uoyueiniebs
edf1p1ooes : (JodA1)ob+
W : anjeauoissiuad-
Buws : uonduosep-
Buwygs : Jojuesb-
adA i piooal : adAy-
adA | pJ0o3s jueig
<<UofeBWNUS>> <<SSE[D uohejuawaldul>>

[eifq : (eifq : Apogebassew i ‘sbupasopdlin : sBupies uj Jejhq : Aeyebessaw uy sebeuepoydiy : AydeiboydAia uebessewydAioap+

ebuapey : ({laiAq : Apuepr ur ‘ejpuepHebusyiey? : ejpuey ui “ebeusyyojdii : Aydesboydfid udiysiequisyyiesses
abusley) : (ejpusiaBusyieys sipusy ur Uebeueyodlin : Aydeisboydlio ul)diysioyinyuesse+

eBusyeyo : (ejpuerebusiieyd : sjpuey vy Jabeuepoydiio ;| Aydesboydlio up)diysioumpOuesse+

JoiAq : (rayuepteumOrob+

sbexoeqoidAinouiswiwAsy Jusisuel) : 0)dio-
(lehq : seuaAIOUMD-

[l=1Aq : 1aynuapliaumo-

[a1Aq : so)dliosgobessaw-

[Je¥Aq : Jaynuopijonanb-

finuap)
<<SSep uoljejusws|dwi>>

US 9,262,608 B2

Sheet 19 of 22

Feb. 16, 2016

U.S. Patent

g1 aanbiy

(10843508} 00BUBILUORIBSSY © (8DBLUBMNUIOISSOS | L0ISSES Ul ‘BUS | ewel ul)eepdng

. fioensqe} apueHabusyeyn : (Juoessyuados

abusyeys : (sipuersbusyeys @ sipuey ui isbaueyordiio : Aydesboydrn udiysiequisyypesses
abusjieyd : (BOBLIBUILCISSOS | UOISSES LINSUMOSYUBdO+

Buoj : (808LBJUUOCISSOS T UOISSSS UI)Uado+

8oBUBILIUOIIASSY | (90BUBILIIUOISSSS | UOISSES Ul ‘BUS | aweal ul)ejrasds

[[e¥Aq Tasnpuspi-

[lesAq : Aguapl-

[etq : s9jdAsoap-
foylisuwng | Aevluewud-

piodayuoIassy
<<SSB|0 UonEIUASIdiL>>

V]

sbuGlBYY) - (20BUBJUILOISSES . UOISSS UIeUMOSyUados
Buof : (80BLBHIUOISSES | UOISSSS Uuado+
B0BUBIUIUCILISSSY | (90BUSJUIUIOISSES | U0ISSaSs Ui ‘BuLlS | swiau Ul)ejeesI+

YIELBJUIUORIDSSY
<<SSE[OEJalU>>

A

20BUBUILIONOSSY | (ejpuBKUCIIeSSY ; Bjpuey W 'Buns ;| eweu u)erepdn-
sbusjeys : (80BLBUILOISSES | UDISSES UIaUMDSYUsdo+

Buoy : (espueuiuoISSaS © LOISSES Ujuados

0BLDJUIUOIUSSSY | (B0BLIBIUIUDISSES | UCISSOS U ‘BuUMS | swel U))a)ealds

{Is1Aq : sepdhaoap-
Aaylerund : Asyluetuud-
Buwyg : swendnob-

isjuoddnode
<<$8e0 uonejuawaidits>

speiqO
PIODSY |ONUOYD
SSOOY DD

US 9,262,608 B2

Sheet 20 of 22

Feb. 16, 2016

U.S. Patent

{(pauoD) g} aunby4

paoveyiesn) (edhjpucoad @ adfy uf ‘Buuls ;| slRY U080+
300/QOUB)SISIO © (S3BUMUILIOISSES | UOISSES UI199/gO0+

Buoj : (eopueyujuoissag : uorsses Ut {Jeifq : pezjjeuss ujweanSios+
pIodByBIE(] | (80BLBUIUDISSSS | UDISSES UljejepUs

sbuepey) : (90BUSIUIUOISSES | UOISSES UIBUMOSYUSUO+

buoy : (soBuBIUIUOISSES © LOISSES UUBdo+

B0BLIBIUILIOIUSSSY © (B8OBLIBJUIUDISSSS | UDISSES Uf .m:Sm. ewey uljeaids

mmia oynusp-

J=1hq : Anuepr-
Aovjlueuilly : AeyAlewsd-
{loviq : eleqhay-

{(lahg : 10vAey-

picoeruesn

B0BLIBJUIUOIISSSY | (a0BLIDJUILOISSOS © UDISSBS Ut ‘BuLys : eweu ul)ajepdny
epurrebusyeyn © (Juoruessyiiedoy

«mowt&&:oammm, uoissas u flayAq : weydAiosp ujusdop

PI02DYSSAIOY

B0BLIBIUUCILBSSY | {90BLIBJUILCISSAS | UDISSES Ul 'DULIS - eleU U)jaiepdng
o%:mlmm:&\mco {Juoruessyuedos

0 . (00BLIPIUIUDISSBS . UCISSas Ul

mcSw aweNonosb-

picoaydnoig

US 9,262,608 B2

Sheet 21 of 22

Feb. 16, 2016

U.S. Patent

91 aanbiy

({1e)hq : Anueps uisquisenouais

(e1fq : sayuan ut ‘[JoyAq : Apusp! uregLuspppes
{fonseps+

f1e}fq : (eyuopSse00v686+

mo&a (Amuepissesoyiebs

mmeﬁ o ‘Em>wwwoow.
fl=14q : Ayuep|sssooe-

dnous
<<SSeO uoejudwaidul>>

i (fle)Aq : Aiuep) v Ul ; edA] uosssiued UfSUCISSILIBOBLo-
(Teifq : seyuen up ‘[lojAq : Ayuep; uAgugenowats

(ui - enjepvoissiunad up flaifq : seyuen w feykq : Apuspr upAnuess
(u1 : enjepucissiuusd Uy ‘eifq : seyuan uy [Jojlq : fnuept u)Anugppes
Juf: B&E Anuspr w it - adA hcoﬁﬂ::mu uppesses

ISIIONUONSSINIY
<<SSEJO uvonRuSwBIdUl>>

$103[gQ 105JU0D §5320Y JOAISS

US 9,262,608 B2

Sheet 22 of 22

Feb. 16, 2016

U.S. Patent

{pauos) g} aanBiy

j00q : (fleyfq : esuodses vy ‘[JBuo; : wopueyesuodses u; ‘ebusyey) : eBueyeyd uNAons

eagprayujabustieys
<<SSE[DEJoW>>

{333/qOuonIeSSY 7 108Iq0 Ul TIejAq : AJijUSP] Ul UOIIoSSY8S+
{leyhq : Anuapi uuoiuessyerowoss
paflgouomuessy : (Joifq : Anusp; unjuolpessyebs
100q : ({Je3Aq : Mpuepr ul)suispuoos
(oalqouoiuessy : joolqo uuoressyppes
{uopoaiion : Juased up)suoIIOSSYIOS:
(Jeifq : ssuadseu uy ‘Buo; : wopusyesuodses us
‘ebuayeyD : ebusjieyo w ‘ebexae40ldAInoUIeUIIASY | 0)dAID U1 fIeifqg : Apuepr ujdiyssequusyypessey
{Jonesy
[eiiq : Queydhiouzgi0b4
1eoq : ({loyAq : esuodsas ui ‘Buoy . wopueyasuodsas uj ‘efiusyey) : ebusyeyd ufjuors
{(sBumesoydhioy : sbumes uyjojdfinjess
sbuesoidAin ; (JojdAinebs
Aoyl : (Aeyfiewiif)obs

BjQeJYSEHI0IBs0 | sUoIossE-
sBuisgoidAin : sBuios-
[lsiAqg : sajuapssumo-

{lo1iq : serdhioun-

Koyliewny © Aoylewd-

uonssjjon

US 9,262,608 B2

1
SYSTEM FOR PROVIDING SESSION-BASED
NETWORK PRIVACY, PRIVATE,
PERSISTENT STORAGE, AND
DISCRETIONARY ACCESS CONTROL FOR
SHARING PRIVATE DATA

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of application Ser. No.
14/038,513, filed Sep. 26, 2013, which is a divisional of
application Ser. No. 12/206,079, filed Sep. 8, 2008, which is
a divisional of application Ser. No. 10/695,507, filed Oct. 28,
2003, now U.S. Pat. No. 7,437,550, which is a continuation of
International Application No. PCT/US02/08275, filed Apr.
19,2002, which claims the benefit of U.S. Provisional Appli-
cation No. 60/285,200, filed Apr. 20, 2001, claims the benefit
of International Application No. PCT/US00/30168, filed
Nov. 30, 2000, and is a continuation in part of application Ser.
No. 09/453,239, filed Dec. 2, 1999, now U.S. Pat. No. 6,442,
687. Each of the aforementioned patents and applications are
hereby incorporated by reference.

BACKGROUND

1. Field of the Invention

This invention generally relates to the field of communica-
tions and more particularly to systems and methods for pro-
viding secure and private communications over a digital net-
work, including session protection privacy, private remote
data storage of data and user access control over such
remotely stored private data.

2. Description of the Related Art

It is well known that individuals using telecommunications
networks are continuously exposed to compromises of their
privacy. This issue has become particularly acute with respect
to the Internet. In many cases Internet hosts, service providers
and Web sites can link users with their identities, and track
and create databases of their activities. Voluntary privacy
policies and related certification organizations such as Truste
have imposed some limits on Internet privacy abuses, but do
not by any means assure end user privacy or anonymity.

As shown in FIG. 1, a client system 100 is connected over
a telecommunications link 110 to an Internet Service Pro-
vider (ISP) (not shown) and ultimately to the Internet 150. A
Web server (Third-Party HTTP server 160) is connected over
its own link 161 to the Internet 150. Properly addressed Inter-
net Protocol (IP) packets may be exchanged over the Internet
150 between client 100 and Web server 160. FIG. 1A shows
the layout of a typical IP packet, including a header 191
containing, among other information, a source address 192
and a destination address 193, as well as data portions, 194,
195, comprising, in this example, 452 “octets” (bytes) of data.

Client system 100 runs Web browser software 105 which
establishes a display window visible to the user. Web browser
105 submits an http request 125 over the internet. The IP
packet containing request 105 contains a header that is
encoded with the IP address of client 100. Furthermore, Web
server 160 may have previously given a “cookie” to client
100, containing information regarding the user of client 100.
Information from this cookie may also be encoded as data
within the IP request. Thus, when Web server 160 receives
http request 125, it may acquire considerable identity infor-
mation regarding the user, and will of course further have
complete information about the action requested by the http
request. The correlation of action and identity is particularly

25

40

45

2

valuable to marketers, yet at the same time most threatening
to users when in the hands or people outside their confidence
and control.

Web server 160 parses the http request, and processes it,
serving up the Web page requested by the user, and/or con-
ducting further processing via a “common gateway interface”
(CGI) 185, which in turn may invoke further processing via
scripts and programs 180, which may in turn communicate
with databases such as database 190 and/or other facilities.
The requested information is sent back to client 100 by http
response 175, again encoded in addressed IP packets and sent
to client 100 over the Internet 150. Web browser software 105
receives the http response 175 and from it creates the appro-
priate screen displays or multimedia eftects for the end user.

The system commonly used in the prior art to provide some
means of isolating an end user from total exposure to the
Internet is known as a “firewall” or “proxy server”. Proxy
server 140 is shown in FIG. 1 as an optional addition to a prior
art Internet communication system. Web browser software
105 is adjusted through a setup or configuration facility to
direct and receive IP packets in the first instance from proxy
server 140, instead of the usual router, gateway or similar
facility of the ISP. Proxy server 140 can then intermediate,
and thereby filter undesired or unacceptable input or output
(which may be so deemed for any number of reasons, includ-
ing security and censorship, in addition to privacy), and can
also reconstruct IP packets so as to some extent mask the
user’s identity. However, the operator of the proxy server can
readily retrieve, and perhaps secretly misuse, any of this
information. Therefore, to be effective, the end user must trust
the administrator of the proxy server in question. In a com-
mercial setting, and most particularly in a mass market set-
ting, establishing and maintaining such trust in an entity may
not be practicable.

Another set of privacy-related systems that has been
deployed to a limited extent are “anonymous remailers”.
These use various techniques to separate the body of an email
message from its identifying header and to resend it the
intended recipient under the remailer’s headers. The diffi-
culty with such systems, such as the well-known remailer at
anon.penet.fi in Finland, is that the server administrator has
access to both the identity and content information, rendering
it vulnerable to abuse or disclosure. In the case of anon
penet.fi, the disclosure was forced by a subpoena obtained by
the Church of Scientology and enforced in Finland, which
required the server administrator to hand over records of
communications from a user that were the subject of a lawsuit
by the Church against the user.

Other systems for protecting end user privacy have been
developed. Typically such systems involve setting one or
more proxies in series either locally on an end user’s com-
puter or on one or more servers. Such systems generally
provide privacy protection by masking the identity of the
sender from third party servers.

For example, one system, Crowds, which was developed
by AT&T, enhances privacy by sharing http requests ran-
domly among a group of subscribed users. With Crowds,
although the identity of a request sender can trace the identity
of'a request sender to the group of users, the third party cannot
be traced to any specific user.

Various cryptographic methods, including but not limited
to public-private key cryptography, symmetric key cryptog-
raphy, one-way hash cryptography, have been used for pri-
vacy-enhancing purposes. Such methods have been applied in
one system, Zero Knowledge, to provide anonymity by
encapsulating identity information in encrypted form in a
surrounding packet created by an intermediate or proxy

US 9,262,608 B2

3

server. However, in such a system, the operators of the inter-
mediate or proxy server have access to both identify and
action information, and could compromise that information
or be forced to give it up to governmental or private parties by
subpoena or other legal process.

Other systems have used cryptographic techniques to pro-
vide for encrypted remote data storage. In such approaches,
data is typically sent to server through protected channel such
as Secure Socket Layer (SSL) connection. On receipt of data
at server, server generates cryptographic key and stores the
data. The result of such systems is that data is protected in
transit and while stored. However, such systems still suffer
from the drawbacks that the identity of end user is known to
storing server, and that the contents of stored data are known
to storing server just prior to the data being encrypted for local
storage.

Systems that have provided access control for remotely
stored data have generally followed the following model:

A data is request sent to server through protected channel
such as Secure Socket Layer (SSL) connection; and

On receipt of the data request at the server, the server
checks the request against secondary access control system
that contains an index of data objects, users, and associated
access privileges.

The result of such a system is that data requests are pro-
tected in transit and data requests can be controlled according
to access rights on the server. However, such a system has the
drawbacks that (i) the identity of end user is known to server;
(ii) the contents of stored data are known to server; and (iii)
the data request is known to server. The result is that such
systems do not provide for strong protection of user identities
or stored data. Managers of such systems can easily obtain
any and all information passing through the system, as can
malicious attackers.

The system disclosed here provides greater security than
prior solutions. The system described here goes beyond
masking the identity of the sender from third parties and
masks the identity of the sender from both third parties and
the system itself. This masking is accomplished by separating
action from identity on the client computer. By way of com-
parison, while the Crowds system prevents third-parties from
knowing the identities of senders, the Crowds system itself,
and the other systems discussed above, have the ability to
know both the identity and actions of its users. The greater
security provided by the system has the additional benefit of
enabling more personal communications to be sent through
the system. Because the system does not rely on removing
identifying information for its functionality, end users can
receive the benefits of identity protection without sacrificing
the ability to act as individuals rather than anonymous enti-
ties.

BRIEF SUMMARY

It is an object of the present invention to provide a system
whereby, without relying on trust, an end user can securely
and privately use communications networks. The invention
seeks to provide users with a greater degree of privacy than is
available with existing technologies.

Among the areas of functionality sought to be provided by
the present invention are the following: (i) session protection
to provide for private browsing of networks; (ii) private
remote data storage and retrieval; and (ii) private access con-
trol exercisable by the user with respect to remotely stored
private data.

10

15

20

25

30

35

40

45

50

55

60

65

4

Other objects of the invention include the following:

A system that is secure. Both operational and crypto-
graphic security are desirable. Cryptographic protocols
employed in this project must preferably be both proven and
“strong”.

A system that does not record the actions of its users. The
system should not be able to link the actions of users to the
identities of users, though it may record either separately.
This separation is a fundamental design objective in provid-
ing personal and portable is privacy protection.

A system that enables anonymous authentication and
authorization for anonymous stored data within digital com-
munications networks.

A system that functions in a reliable manner. Operation
should be consistent and, in the event of failure, the system
should notify its users and terminate without interfering with
other functioning processes on its host computers.

A system that reduces the need for user interaction. Pref-
erably, the services provided by the system should be trans-
parent to its users

Preferably, a system that functions without the persistent
installation of software on client computers, and is instead
accessible from any compatible network computer or other
access device.

Preferably, a system that functions on a wide variety of host
platforms and architectures.

Preferably, a system that is able to accommodate a large
number of concurrent users.

To accomplish the session protection objectives of the
invention,

The system separates a user’s identity and action. The
identity and action information are encrypted and forwarded
to an identity server (which knows the user’s identity but
cannot decrypt the action information); the identity server
forwards the encrypted action information to a action server
(to which the action is anonymous), which carries out the
action, encrypts the results and forwards them to the identity
server (which cannot know them because they are encrypted),
which in turn returns them to the user, which has a decryption
key for the returned data.

In this system, only the client may recombine or associate
identity and action

In this system, only the client may view identity and action
in plain-text together

In this system, all communications between client and
server are encrypted

To accomplish the private persistent data storage aspects of
this invention:

The system allows individuals and computer applications
to store data remotely onto the network in such a way that the
storage provider cannot identify the owner or contents of
stored data; in such a way that other individuals and computer
applications can access all or part of the stored data; and in
such a way that the access control manager cannot identify the
identity or access privileges of individuals or computer appli-
cations and cannot identify the contents of stored data. In one
embodiment, this may be done by treating the data storage
request as an “action” an also creating a “user object” to be
held by the action server but retrievable by the user, to catalog
the user’s privately stored data.

In this system, the client encrypts all data prior to storage in
the database

In this system, the system is not able to decrypt any indi-
vidual object

In this system, the system is not be able to associate one
object with another

US 9,262,608 B2

5

In this system, the system is not be able to associate an
object with its owner

To accomplish the aspect of the invention involving private
access control to stored data:

The system stores data privately as discussed above. A
further “action” is permitted, in which one user can grant
access to a second user, or to a group of users. The access is
effectuated by passing keys and points through a “message
queue” maintained on the action server and examinable by
users when they retrieve their respective user objects.

In this system, the system enforces access control restric-
tions on the server, not on the client, without knowing the
identity of the accessor, the contents of the data he is access-
ing, or their access privilege.

In this system, the system allows end users and client
applications to grant, change, or revoke access to stored data
and user groups.

The manner in which the invention achieves these and
other objects is more particularly shown by the drawings
enumerated below, and by the detailed description that fol-
lows.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The following briefly describes the accompanying draw-
ings:

FIG. 1 shows a prior art system whereby Web browser
software communicates over the Internet with a Web server,
optionally through the intermediate means of a proxy server.

FIG. 1A shows the header and data layout of a typical IP
packet as used over the Internet.

FIG. 2 is a block diagram showing the system architecture
employed in connection with an embodiment of the Ponoi
session protection aspect of the invention.

FIG. 3 is adiagram showing a range of additional functions
that may be provided based in part on the technology of the
Ponoi session protection aspect of the present invention.

FIG. 41is ablock diagram showing the request transmission
side of a transaction in accordance with an embodiment of the
Ponoi session protection aspect of the invention.

FIG. 5 is a block diagram showing the action response side
of a transaction in accordance with an embodiment of the
Ponoi session protection aspect of the invention.

FIG. 6 is a block diagram showing the principal physical
components utilized in connection with an embodiment of the
Ponoi session protection aspect of the present invention, and
their interconnection over the Internet.

FIG. 7 is a flow chart showing the steps involved in the
session initialization portion of the methods employed in
connection with an embodiment of the Ponoi session protec-
tion aspect of the invention.

FIG. 8 is a flow chart showing the steps involved in the
request transmission portion of the methods employed in
connection with an embodiment of the Ponoi session protec-
tion aspect of the invention.

FIG. 9 is a flow chart showing the steps involved in the
response transmission portion of the methods employed in
connection with an embodiment of the Ponoi session protec-
tion aspect of the invention.

FIG. 10 is a flow chart showing the steps involved in the
session termination portion of the methods employed in con-
nection with an embodiment of the Ponoi session protection
aspect of the invention.

FIG. 11 is a component-level block diagram showing some
of the functional components employed in connection with

10

15

20

25

30

35

40

45

50

55

60

65

6

additional embodiments of the invention that provide private
persistent storage and access control.

FIGS. 12-16 are Unified Modeling Language (UML) dia-
grams of certain objects employed in the implementation of
various embodiments of the invention.

DETAILED DESCRIPTION

Various embodiments of the invention are illustrated in
FIGS. 2-16, and described in the text that follows. Although
the invention has been most specifically illustrated with par-
ticular embodiments, it should be understood that the inven-
tion concerns the principles by which such embodiments may
be constructed and operated, and is by no means limited to the
specific configurations shown.

We first address issues of terminology. For purposes of this
disclosure, we will take “anonymity” to mean the de facto
separation of an entity’s actions from its identity—and there-
fore from any distinguishing characteristics.

Further definitions used herein include the following:

HTML: Hypertext Mark-up Language

HTTP: Hypertext Transfer Protocol

MIME: Multimedia Internet Mail Extensions

IP: Internet Protocol (version 4)

JAR: Java Archive

JDK: Java Development Kit

JRE: Java Runtime Environment

SSL: Secure Socket Layer

URI: Universal Resource Identifier

URL: Universal Resource Locator

WWW: World Wide Web

“Ponoi session protection” means conducting communica-
tions over a network with the use of a system as claimed in the
parent U.S. patent application, U.S. Ser. No. 09/453,239,
specifically,

“A system for providing communications over a network,
by means including at least a client and a remote server,
wherein a user may submit a request through said client for a
specified action to be performed in response to said request by
said remote server, said user-submitted request comprising
identity information that identifies the user mailing the
request, and action information that specifies the action
requested from said remote server by said user, and wherein
said communications are provided in a secure and anonymous
manner in that said action information is submitted to said
remote server without revealing said identity information to
said remote server, and in that only said client, and not any
facility through which said action information or any
response thereto passes in the course of being submitted to or
received from said remote server, possesses both said identity
information and said action information, said system com-
prising (in addition to said client and remote server):

a) an application that separates said identity information
and said action information from the user’s information
request encrypts said identity information and said action
information, and sends said identity information and said
action information as so encrypted to a first intermediate
server,

b) said first intermediate server, which contains means for
decrypting said encrypted identity information but not said
encrypted action information, and for transmitting said
encrypted action information to a second intermediate server;

¢) said second intermediate server, which contains means
for decrypting said action information, transmitting said
decrypted action information to said remote server, receiving
the remote server’s response, encrypting said remote server

US 9,262,608 B2

7

response, and transmitting said encrypted remote server
response to said first intermediate server,

d) said first intermediate server further having means for
receiving said encrypted remote server response from said
second intermediate server, associating said encrypted
remote server response with said identity information and
sending said encrypted remote server response to said appli-
cation;

said application further having means for decrypting said
remote server response and forwarding said decrypted remote
server response to said client for presentation to the user.”

The present disclosure makes a distinction between
enabling anonymity, in which case privacy results from strip-
ping all unique information from a user, and privacy, in which
case identifying information is retained but kept secure.

The first embodiment discussed, which provides “Ponoi
session protection” (sometimes referred to herein as the “sys-
tem”), consists of three major components that participate in
relaying anonymous HTTP requests to a Web server via IP. In
reading the following description, general reference should
be made to FIGS. 2, 4, 5 and 6.

1. The first component of the system is a client application
(for example, Java applet client 606) that acts as an HTTP
proxy for a user’s web browser software while they are con-
nected to the system. This application is the only portion of
the system that resides on client systems (such as client sys-
tem 100) and will be communicated to those systems via the
world-wide-web (for example, by fip or http download from
a server (not shown) associated with what is referred to in
FIG. 6 as the “privacy” or “system” facility 300.

2. The second component is an identity server 251, which
is part of privacy facility 300, that receives requests 225 from
the client application and forwards them for further process-
ing. The identity server 251 maintains the information
required to transmit information back to a user for the dura-
tion of that user’s HT'TP session. Portions of a user’s request
225 that contain information concerning the destination of
that request—or that permit divination of the request—must
never be accessible to the identity server.

3. The third and final component of the system is an action
server 252 that performs HTTP requests on behalf of the
system’s users (e.g., user 200, etc.). The action server (252)
must never have access to information that is specific to an
individual user of the system, rather, it acts on behalf of the
identity server 251 and return the results 275 ofauser’s HT'TP
request to the identity server 251 for transmission to the
client.

The mechanism by which the identity server 251 is pre-
vented from accessing information about the destination of an
HTTPrequest and by which the action server 252 is prevented
from accessing information about the source of a request is a
communication protocol that employs public key crypto-
graphic techniques. See generally, Rivest, et al., U.S. Pat. No.
4,405,829. By employing cryptographic techniques to guar-
antee that the system internally separates identity information
from action information, we also guarantee that this separa-
tion is maintained on either side of the system facility 300.
Because of this secure encryption, third parties monitoring
network traffic going to or coming from any of the servers in
the system facility, either legally or illegally, are never able to
connect an action taken by the server to the identity of a user
who is connected to the server. In addition, the persons
administering such servers also do not have any means for
making such a connection. Thus, it is not necessary for such
administrators to be trusted by users of the system in order for
such users to derive the security and anonymity benefits pro-
vided by the invention.

10

15

20

25

30

35

40

45

50

55

60

65

8

In the “privacy” or “system” facility referred to above, the
identity server, action server and other elements thereof can
be separate processes on a single machine or processor, pro-
cesses on separate machines or processors. Such servers and
other elements can be under the same administration or sepa-
rate administration. The determination of such matters is not
critical to the invention.

Rules:

The system preferably functions in accordance with the
following rules:

The action server 252 has full knowledge of individual’s
actions but no knowledge of individual’s identity

The identity server 251 has full knowledge of individual’s
identity but no knowledge of individual’s actions

The Java applet client 606 separates identity and action
information

Each of the action server 252, identity server 251 and Java
applet client 606 have a unique pair of public-private keys

The action server 252 and Java applet client 606 can com-
municate with one another only by passing encrypted
requests through identity server

Flow of Processing

The flow of processing in the system is illustrated in FIGS.
7-10.

Session Initialization

As shown in FIG. 7, system initialization 710 begins when
user 200 who is rung a Web browser 105, downloads the code
for Java applet client 600 from a server associated with the
system facility 300. Next, 720, the Java applet client 606,
running under Web browser 105, changes browser 105’s
proxy setting to direct http requests through the Java applet.

Then, 730, the Java applet client 606 creates public-private
key pair.

In step 740, Java applet client 606 receives identity server’s
(251) public key.

In step 750, the Java applet client 606 encrypts its public
key with the identity server’s (251) public key and sends its
public key, so encrypted, to identity server 251.

In step 760, the identity server 251 encrypts action server’s
(252) public key with the Java applet client’s (606) public key,
and sends action server’s (252) public key, so encrypted, to
Java applet client 606.

In step 770, Java applet client 606 encrypts its public key
with the action server’s (252) public key and sends its public
key, so encrypted, to action server (252) via identity server
251.

Request Transmission

As shown in FIG. 8, request transmission comprises the
following steps:

In step 810, Java applet client 606 monitors the input-
output streams from browser 105.

In step 820, when an http request 125 is sent by browser
105, Java applet client 606, which has been configured as
such browser’s http proxy, receives the request and parses it
into separate identity and action information.

In step 830, Java applet client 606 creates a first sealed
object containing the action information for the http request
125, encrypted with the action server’s (252) public key.

In step 840, the Java applet client 606 creates a second
sealed object containing the identity information for the http
request 125 encrypted with the identity server’s (251) public
key

In step 850, Java applet client 606 sends both sealed objects
to the identity server 251.

In step 860, identity server 251 forwards the action sealed
object to the action server 252.

US 9,262,608 B2

9

In step 870, action server 252 decrypts action information
for the http request and forwards it, preferably through
another intermediate http proxy (not shown), to the destina-
tion third part server.

Response Transmission

As shown in FIG. 9, response transmission comprises the
following steps:

In step 910, the action server 252 receives http response
275 from the third-party server, preferably through said inter-
mediate http server.

In step 920, action server 252 encrypts http response 275
with the Java applet clients (606) public key.

In step 930, action server 252 forwards encrypted http
response 230 to identity server 251.

In step 940, identity server 251 forwards encrypted http
response 230 to Java applet client 606.

In step 950, Java applet client 606 decrypts http response
230 and forwards it to browser 105 for display.

Session Termination

As shown in FIG. 109, session termination comprises the
following steps:

In step 1010, Java applet client 606 purges public-private
key pair it has created.

In step 1020, Java applet client 606 resets browser 105
proxy settings to previous values.

Other Functionality

FIG. 3 reflects other functionality in addition to simple
network navigation and Web browsing 301 that is provided in
connection with the invention. Such functionality includes
without limitation Web browsing with passwords 302, elec-
tronic mail 303, file storage and transfer 304, chat 3Q5, tele-
phony 306, transactions 307, and electronic commerce 308.

Further Description of System Components

What follows is a more detailed description of the various
system components of a first embodiment and their operation.

Proxy Client

The proxy client of the first embodiment, a small footprint
java applet 606, is the system component responsible for
connecting end-users to the system. It functions as an HTTP
proxy server and service HTTP requests from a user’s web
browser. Requests transferred through the system proxy cli-
ent are encrypted and transferred to the identity server.
Responses received by the proxy client from the action server
via the identity server are decrypted and returned to a user’s
web browser.

Upon invocation from a known URL on the world-wide-
web, the proxy client is loaded from a JAR file by a client web
browser. Once loaded, the proxy client generates and/or
retrieve the cryptographic data required to establish a secure
communication channel with the system action server, and
automatically configures the user’s web browser to use the
proxy client as a proxy server for browsing the world-wide-
web (or alternately prompts the user to make this setting
manually).

After receiving an HTTP request generated by auser’s web
browser, the proxy client establishes a secure connection to
the identity server using the communication protocol dis-
cussed later in this disclosure. In the event of connection
failure, the proxy client informs the user of the failure via a
dialog box, and configuration changes to the user’s web
browser are reversed. Assuming a connection to the identity
server can be successfully established, the proxy client filters
all identifying information from the current HTTP request,
removing HTTP header data or replacing header values with
non-identifying defaults as necessary. The HTTP request is
then be appended to any cryptographic data required for
response transmission and both are be encrypted using the

10

15

20

25

30

35

40

45

55

60

65

10

cryptographic protocol specified as part of the system com-
munication protocol (see Communication Protocol section
below). Encrypted data is then be placed within a well formed
the system protocol request, and the request is transmitted to
the identity server.

Once a request has been sent from the proxy client to the
identity server, the proxy client waits for a response. I[f a valid
response is received, that response is be decrypted and
returned to the user’s web browser. Should the system fail to
respond to a proxy client’s request for a specified timeout
interval, the proxy client aborts request processing and
returns an error page to the user’s web browser.

Server Architecture

Identity Server

Upon receiving a request from a web browser, the proxy
client applet initiates a connection to the identity server. Once
this connection is established the identity server reads the
contents of an encrypted HTTP request from the proxy client.
Should a valid request not be received within a specified
tune-out interval, the identity server 251 terminates the con-
nection with the proxy client applet.

After receiving an encrypted client request, the identity
server establishes a communication connection with the
action server, and forward the request for further processing.
In the event that a connection between the Identity and action
servers cannot be established, the identity server terminates
its connection with the proxy client applet. Once a connection
is successfully established and those portions of the client
request not related to the client’s identity have been trans-
ferred, the identity server waits for a response from the action
server. Again, in the event that a response is not received
within a specified time-out interval, the identity server termi-
nates its connection with the proxy client applet. Finally, valid
response data received from the action server is forwarded to
the proxy client applet, and all IP connections are terminated.

Action Server

The action server 252 is a background process that resides
on a computer system associated with system facility 300. Its
role is to execute HTTP requests on behalf of users of the
system, and act as an end-point for the cryptographically
secure communication channel by which data is transferred
between the system’s back-end facilities and its users. Once
the identity server has received an HTTP request, a connec-
tion is established between the identity server and an action
server residing on a different physical computer. This con-
nection is used to forward the HTTP request to the action
server where it is decrypted. After decryption, the clear text
HTTP request is forwarded to a standard HTTP proxy server
that retrieves the requested URL and returns it to the action
server. Should the HTTP proxy fail to respond within a speci-
fied time-out interval, the action server terminates its IP con-
nections with both the proxy server and the identity server. If
a valid HTTP response is received by the action server, that
response is encrypted using the cryptographic data provided
along with the HTTP request, and the response is returned to
the proxy client via the identity server.

Communication Protocol

Within the system, a single communication protocol is
used to relay HTTP requests from the proxy client applet to
the identity server and from the identity server to the Action
Server. This protocol contains encrypted HTTP data aug-
mented with a cryptographic key exchange mechanism and a
minimal amount of control information. Two transmission
formats are defined by this specification, the first for commu-
nication to the action server, and the second for communica-
tion by the action server.

US 9,262,608 B2

11
Request Format
HTTP requests transmitted by the proxy client to the iden-
tity server for processing by the action server is formatted as
follows:

TABLE 1

Client Transmission Format

Clear Text
Header

Encrypted

Public Key HTTP Requet

Each transmission consists of three distinct parts. The first
is a 96-bit long clear text header block that contains control
information for the transmission. The second and third por-
tions are encrypted data blocks of variable length. The header
is immediately followed by the proxy client’s public key in
order to permit responses from the action server to be
encrypted for transmission to the proxy client The HTTP
Request received from a user’s web browser follows the pub-

lic key.
TABLE 2

Client Header Format
8 16 24 32
o D N T
Protocol Public Key Public Key HTTP Request
Version Length Length Data Length
HTTP Request HTTP Request HTTP Request End of Header Marker
Data Length Data Length Data Length (0x00)

Magic Cookie (bits 0-31): An identifier used to rapidly
indicate a valid transmission. All components of The system
shall terminate communications that do not begin with this
sequence.

Response Format

HTTP responses transmitted by the action server to the
proxy client are formatted as follows:

TABLE 3

Server Transmission Format

Clear Text
Header

Encrypted
HTTP Response

Each transmission consists of two distinct parts. The firstis
an 80-bit long clear text header block that contains control
information for the transmission. The second portions is an
encrypted data block of variable length containing the HTTP
response for a client’s request

TABLE 4

Server Header Format
8 16 24 32
B ‘D’ N >
Protocol HTTP Response HTTP Response ~ HTTP Response
Version Data Length Data Length Data Length
HTTP End of Header
Response Marker (0x00)
Data Length

Magic Cookie (bits 0-31): A unique identifier used to rap-
idly indicate a valid transmission. All components of the
system shall terminate communications that do not begin
with this sequence.

10

15

20

25

30

35

40

45

50

55

60

65

12

Protocol Version (bits 32-39): A number used to identify
the version of the protocol for future compatibility. The ver-
sion of the protocol used in the prototype implementation will
be 0x01 (one).

HTTP Response Data Length (bits 40-72): Length of the
encrypted HTTP Response in bytes.

End of Header Marker (bits 73-80): The literal value 0x00
(zero) used to delimit the header and data portions of a trans-
mission.

Further Embodiments

Further embodiments of the invention are discussed in
connection with the component block level diagram shown in
FIG. 11, and the UML diagrams of system objects shown in
FIGS. 12-16.

Overview of System Implementation

Two primary types of data exist encrypted in the database:
persistent objects and access control data Persistent objects
include binary data, collections and users. Access control data
is used to validate that a given user’s request is allowed under
the permissions set up by the object’s owner. Cryptography
protects both the persistent objects and their associated access
control entries such that the system never has sufficient infor-
mation to decrypt both, or to associate a given access control
entry with an object persistently.

Summary of Private Persistent Storage Capabilities

The private persistent storage capabilities provided by one
embodiment of the invention involve the following (with
reference to FIG. 11):

A client application residing on the end user’s (or end
computer’s) computer (1101).

A first intermediate, or identity, server (1104)

Zero or more further intermediate identity servers

A second intermediate, or action, server (1105)

The system has the goal of protecting stored, or persistent,
data such that:

Only the owner of stored data knows the contents of the
stored data

Only the owner of stored data knows who owns a set of data

Stored data can be accessed from any point on the commu-
nications network (1103)

The server portions of the system cannot decrypt stored
data objects

The server portions of the system cannot associate one
object with another

The server portions of the system cannot associate an
object with its owner

Specific implementations of this system and method can
vary across computer and network platforms, can exist at
different points in the network stack, on different platforms,
as hardware or as software, using symmetric or public-private
key cryptography algorithms. A simple implementation is
used below to illustrate the system and method in practice.

In this implementation, the client application is a Java
applet within an end user’s web browser, the first intermediate
server is known as the identity server, the second intermediate
server is known as the action server; and there are no further
intermediate servers.

To store data in one embodiment, the following steps are
employed:

(a) Generating within the client application (1102) a first
encryption key and a first decryption key. These can be a
public-private key pair, or symmetric keys can be used in
combination with a public-private key pair;

(b) encrypting the data within the client using the first
encryption key;

US 9,262,608 B2

13

(c) generating a data object identifier within the client
application. This can be a pseudorandom number, preferably
a very large pseudorandom number to minimize any possi-
bility of the same identifier being derived in a subsequent
session and/or by a different user;

(d) creating a data object that contains the data object
identifier and the encrypted data;

(e) sending the data object to the action server (1105)
through the identity server (1104) in accordance with the
session protection methods described above (Ponoi session
protection). Note that there can be a plurality of identity
and/or action servers;

(f) storing the data object in a database (1106) under the
control of the action server, using the data object identifier as
a locator;

(g) writing the data object identifier to a user object (see
FIG. 13) within the client application. Note that a user object
can hold other data in addition to that described for this
storage application, and that there can be a hierarchy of data
objects with one being regarded as the “root data object”. In
general, the user object described here is sometimes referred
to as the “hierarchical user object™;

(h) writing the first decryption key to the user object;

(1) generating within the client application a user object
encryption key based on information private to the user and
reproducible in future sessions by the user, in a manner such
that the private information cannot practicably be derived
from the user object encryption key. Note that there are many
possibilities for how such keys and identifiers may be gener-
ated (here as well as with respect to the other applications
describer herein). One approach is to take double-hash the
user’s password, add it to the user’s ID and hash the result;

(j) encrypting the user object with the user object encryp-
tion key;

(k) generating within the client application a user object
identifier based on information private to the user and repro-
ducible in future sessions by the user, in a manner such that
the private information cannot practicably be derived from
the user object identifier, Note that there are many possibili-
ties for how such keys and identifiers may be generated. One
approach is to use a hash of the user’s 1D;

(1) associating the user object identifier with the user
object;

(m) sending the user object and user object identifier to the
action server through the action server in accordance with
Ponoi session protection; and

(n) storing the user object in the database (1106, 1107),
using the user object identifier as a locator.

Result: End user has stored data remotely, can access that
data in the future Storing system does not know identity of
end user or contents of stored data or location of keys to
decrypt stored data.

To retrieve data in one embodiment, the following steps are
employed:

(a) generating within the client application (1102) (which
may be a Java applet) a user object identifier in accordance
with the same method and based on the same information that
was used to generate the user identifier by which the data had
previously been stored. To do this, the end user would input
authentication tokens such as username and password;

(b) sending the user object identifier and a request for a user
object to the action server (1105) through the identity server
(1104) with Ponoi session protection. Again, there can be a
plurality of identity and/or action servers on the network;

(c) if the user object identifier matches a user object iden-
tifier previously stored by the action server, sending the
requested user object to the client application through the

10

15

20

25

30

35

40

45

50

55

60

65

14

identity server under Ponoi session protection. The requested
user object residing on the action server comprises a data
object decryption key and a data object identifier is encrypted
with a user object encryption key;

(d) generating within the client application a user object
decryption key in accordance with the same method and
based on the same information that was used to generate the
user object encryption key for storage purposes;

(e) decrypting the user object using the user object decryp-
tion key;

(D) selecting from the decrypted user object the data object
identifier corresponding to the encrypted data desired to be
retrieved;

(g) sending the data object identifier and a request for the
encrypted data to the action server through the action serverin
accordance with Ponoi session protection;

(h) within the action server, retrieving the encrypted data
from a database (1106) under the control of the action server,
using the data object identifier as a locator;

(1) sending the encrypted data to the client application
through the action server in accordance with the method of
claim 1;

(j) reading the data object decryption key from the
decrypted user object;

(k) decrypting the encrypted data with the data object
decryption key; and

(1) making the decrypted data available to the user.

Result: End user has retrieved stored data without revealing
identity to holder of data.

Upon the conclusion of a user session all keys may be
deleted onthe client side. Keys for the hierarchical user object
can be regenerated by the client based on the user’s authen-
tication token. Keys for stored objects can be read from the
hierarchical user object.

Although the foregoing was presented in the context of a
system comprising first and second intermediate servers and
Ponoi session protection, such as system could use any other
means of network storage, such as a stand-alone storage
server with which client applications communicate via secure
socket layers (SSL). In addition, a system involving the use of
Ponoi session to protection could be configured such that data
transfers were broken down into data increments and a plu-
rality of identity and action servers were employed in a dis-
tributed processing manner.

Summary of Access Control Capabilities

The access control capabilities provided by one embodi-
ment of the invention involve the following:

A client application residing on the end user’s computer or
interoperating with a computer application.

A first intermediate, or identity, server

Zero or more further intermediate identity servers

A second intermediate, or action, server

The system has as a goal protecting stored, or persistent,
data such that:

Only the owner of stored data and others with access rights
to stored data know the contents of the stored data

Only the owner of stored data and others with access rights
to stored data know who owns a set of data

Stored data can be accessed from any point on the commu-
nications network

The server portions of the system cannot decrypt stored
data objects

The server portions of the system cannot associate one
object with another

The server portions of the system cannot associate an
object with its owner or others with access rights to stored
data

US 9,262,608 B2

15

Stored data can be accessed by other individuals and appli-
cations, not just the data owner

Access controls to stored data are applied remotely, on the
server

The server portions of the system cannot know access
privileges associated with a set of data and/or a set of indi-
vidual(s) or application(s).

End users and/or computer applications can control the
users and groups who have access to stored data

Specific implementations of this system and method can
vary across computer and network platforms, can exist at
different points in the network stack, on different platforms,
as hardware or as software, using symmetric or public-private
key cryptography algorithms. A simple implementation is
used below to illustrate the system and method in practice.

In this implementation, the client application is a Java
applet within an end user’s web browser; the first intermedi-
ate server is known as the identity server; the second inter-
mediate server is known as the action server, and there are no
further intermediate servers.

To store data and grant access to data in one embodiment,
the following steps are employed:

(a) identifying the data to be stored and the user who is to
have access thereto;

(b) generating within the client application (1102) a first
encryption key and a first decryption key;

(c) encrypting the data within the client using the first
encryption key;

(d) generating a data object identifier within the client
application;

(d) generating a challenge public-private key pair for the
data;

(e) reading with the client application an identifier for the
accessing user;

(f) generating a coded user identifier from the user identi-
fier in a manner such that the user identifier cannot practicably
be deduced from the coded user identifier;

(g) sending the coded user identifier to the action server
(1105) together with a request for the accessing user’s mes-
sage queue public key, through the identity server (1104), in
accordance with Ponoi session protection;

(h) the action server identifying the message queue public
key associated with the coded user identifier and returning the
message queue public key to the client application through
the identity server, in accordance with Ponoi session protec-
tion;

(1) creating a message object comprising the data object
identifier, the first decryption key, and the private challenge
key;

(j) encrypting the message object with the message queue
public key;

(k) sending the encrypted message object to the message
queue on the action server associated with the coded user
identifier, through the identity server, in accordance with
Ponoi session protection;

(1) creating a data object comprising the data object iden-
tifier, the encrypted data, and the public challenge key;

(m) sending the data object to the action server through the
identity server, in accordance with Ponoi session protection;

(n) the action server storing the encrypted data in a data-
base (1106, 1109) under the control of the action server, using
the data object identifier as a locator and maintaining an
association with the public challenge key.

Result Data stored in private, protected fashion. Data
accessible by party other than owner. Central data holder does
notknow contents or owner of stored data. Central data holder
does not know access rights of others to stored data.

10

15

20

25

30

35

40

45

50

55

60

65

16

To retrieve data to which access has recently been granted,
in one embodiment, the following steps are employed:

(a) the accessing user providing authentication token to
client application (1102);

(b) generating within the client application a user object
identifier based on the authentication token in the same man-
ner previously used to generate the user object identifier
associated with the accessing user on the action server,

(c) sending the user object identifier and a request fora user
object to the action server (1105) through the identity server
(1104) in accordance with the method of claim 1;

(d) if the user object identifier matches a user object iden-
tifier previously stored by the action server, sending the
requested user object to the client application through the
identity server in accordance with the method of claim 1, the
requested user object comprising a reference to the accessing
user’s message queue on the action server and a message
queue decryption key;

(e) requesting the message queue from the action server
through the identity server, in accordance with the method of
claim 1;

(f) the action server retrieving the message queue from a
database (1106, 1108) under control of the action server, and
returning the message queue to the client application through
the identity server, in accordance with the method of claim 1,
the message queue comprising a message object previously
inserted in the message queue in accordance with claim 4;

(g) reading the message queue decryption key from the
user object;

(h) decrypting the message object from the message queue
with the message queue decryption key;

(1) reading the message object and obtaining therefrom the
data object identifier for encrypted data that had been stored
under control of the action server in accordance with claim 4;

(j) generating a challenge request and forwarding the chal-
lenge request and the data object identifier to the action server
through the identity server, in accordance with the method of
claim 1;

k) the action server encrypting the challenge with the pub-
lic challenge key that was associated with the data object
identifier in accordance with claim 4, and returning the
encrypted challenge to the client application through the
identity server, in accordance with the method of claim 1;

(1) reading the private challenge key from the message
object;

(m) decrypting the encrypted challenge using the private
challenge decryption key;

(n) returning the unencrypted challenge together with the
data object identifier to the action server through the identity
server, in accordance with the method of claim 1;

(o) the action server matching the challenge received with
the challenge sent, and retrieving a data element associated
with the data object identifier;

(p) sending the data element to the client application
through the identity server, in accordance with the method of
claim 1;

(q) reading the first decryption key from the message
object; and

(r) decrypting encrypted data associated with the data ele-
ment.

In one embodiment, the encrypted data is directly returned
to the client application. In an alternative implementation, an
object handle, constituting a temporary pre-approval to
access one or more objects, is returned, rather than the data
object. This has the benefit of allowing large data objects to be
returned in many small increments rather than one very large
piece.

US 9,262,608 B2

17

Result: Data is stored in private, protected fashion. Data is
accessible by parties other than the owner. Central data holder
does not know the contents or owner of the stored data.
Central data holder does not know access rights of others to
the stored data. Central data holder is able to apply access
privileges to stored data.

Groups (actually known as a collection, inside the code)
are treated as meta-collections of users. That is, just as a user
has a message queue, so too does a group have a message
queue. Just as an object has a challenge key, so too does a
group have a challenge key. In practice, a user would have, in
his user object, a reference to a group and group challenge to
which he belonged.

Again, although the foregoing was presented in the context
of a system comprising first and second intermediate servers
and Ponoi session protection, such as system could use any
other means of network storage, such as a stand-alone storage
server with which client applications communicate via secure
socket layers (SSL). In addition, a system involving the use of
Ponoi session as protection could be configured such that data
transfers were broken down into data increments and a plu-
rality of identity and action servers were employed in a dis-
tributed processing manner.

Detail of System Implementation
Persistent Encryption

Persistent data is protected with stronger encryption than
session traffic. The client generates additional symmetric
keys to encrypt persistent data. Since the data may be
retrieved during a subsequent session, the private, the key
must be stored persistently to dept the data.

Top-level objects use a pass phase-based cipher to encrypt
the top-level object data This cipher uses a base-64 encoded,
one-way hash of'the user’s name and password as the seed for
a symmetric DES key. Top-level objects are thus protected
with the strongest level of encryption. To retrieve the top-level
object, the user’s name and password are re-hashed and
encoded to create a new DES symmetric key to decrypt the
user object The user is thus the only agent capable of decrypt-
ing the top-level object without mounting a dictionary attack.

For all other objects, the client regenerates its persistent-
strength 3DES or Blowfish key. The object will be encrypted
with this key. The key will be stored in the parent of the object
being created. In addition to storing the key, the parent also
contains a locator for the child object. Once a user has suc-
cessfully authenticated and has access privileges to read the
parent object, the data needed to both locate and decrypt the
object is available (only on the client).

Creation of Locators and Decrypters

To ensure the anonymity of data, the client creates nearly
all locators in the system. These are based on a series of
one-way bashes of data the user knows but could not be
readily guessed (e.g., user name and password). When the
user enters authentication data, the client creates the appro-
priate hashed locator. All other locators in the system are
stored encrypted under a top-level object. Users may navigate
their ‘tree’ in memory on the client one level at a time. For
example, given a decrypted object, the client application may
reference the object locators and decrypters of all child
objects directly linked to the parent object. When that object
is retrieved and decrypted, it may contain locators to other
collections or persistent objects, as well.

25

30

40

45

55

60

TABLE 5
Type Aspect Field Source
User Object Locator HASH(ID)
Decrypter PBE(ID + PW)
Access Control Locator Server-generated
Decrypter Server-generated
All Other Object Locator RANDOM 40
Decrypter Client session key
Access Control Locator Server-generated
Decrypter Server-generated
Challenges

Challenges verify that a given user has the credentials
necessary to execute a request, typically a persistent storage
orretrieval request requiring use of the access control system.
All challenges use asymmetric, or public-private, cryptogra-
phy. To protect against a “known ciphertext” attack against
the client by the server, these challenges do not use standard
encryption/decryption, but rather use signing/verifying.
Thus, the algorithm chosen must support digital signatures.

The challenge system functions as follows:

1. Client request requires verification of identity without
furnishing personally-identifiable data

2. Server generates random number R1

3. Server sends R1 to client (may be sent in plaintext)

4. Client receives R1

5. Client generates random number R2

6. Client signs R1 and R2 with private, signing key—S
(R1IR2)

7. Client sends server signed bytes (may be sent in plain-
text)

8. Client sends server R2 (may be sent in plaintext)

9. Server receives R2 and signed response

10. Server verifies challenge with public, verifying key—
V(S(R1, R2))=R1, R2=TRUE

11. Client sends request

12. Server processes request

Persistent, Private Data Storage

Authentication

A core component of the Ponoi service is to provide
encryption and decryption services that secure users both
within single sessions and across multiple sessions.

Authentication begins within a basic Ponoi session and is
therefore secure. Successful authentication prompts a regis-
tered user Ponoi session The idServer receives and stores only
digests of user name and password for added security.

The access control entry for a user object is encrypted by
the server at account creation with passphrase-based encryp-
tion (PBE). This cipher is generated by taking a hashing a
hash of the user name and double-hash of the user password.
The actual user object is protected by the inverse of this (e.g.,
hashing a double-hash of the user name and a single-hash of
the password). Since only the user knows both the name and
password of the account, neither hash can be computed from
the other.

The client uses the standard access control system to
authenticate to an account (user) object If the user can decrypt
both the access control entry and the user object, the user has
been authenticated.

Discretionary Access Control

Overview

Unlike most parts of the system, access control is primarily
a server-centric component. When creating a new object, the
client initiates the create request The server creates an empty
database record and an access control entry for the object,
which is returned after the database creation is successful.

US 9,262,608 B2

19

The client then updates the object with the access control
entry. It then encrypts the object and uploads it to the server,
which fills the remainder of the database record.

The access control record is stored encrypted on the server.
The access controller on the server returns the location of the
access control record in the database, as well as two sets of
decrypting keys for the access control record. The first key,
known as the access decrypter, may be shared with any other
user, using a grant access request The second key, known as
the owner decrypter, is used solely to grant and revoke access
to other users.

When requesting a create, read, update or delete request on
an object, only the access decrypter needs to be furnished To
modify, grant or revoke privileges on an object, the owner
decrypter must be supplied as well.

Each access control list may have one or more access
control entries. These entries are identified by a random hash,
called the access control locator. These locators do not map in
any way to the user or account locators discussed earlier. Each
locator also has an asymmetric private key used to verify the
identity of the requester, without actually using personally-
identifiable information. The client maintains a set of public
signing keys that will be used to correctly respond to crypto-
graphic challenges from the server (see Challenges in Cryp-
tography above).

CRUD Privileges

To read, modify or delete an object, the client must supply
the correct access locator and decrypter for the access control
entry. If the server can locate and decrypt the access control
entry successfully, and if the permissions decrypted match the
permissions required for the request, the server will execute
the request. Otherwise, a permission denied exception will be
thrown and displayed to the user.

The create privilege works slightly differently than read,
update and delete. Create acts on a parent collection, and the
create privilege translates to “has privileges to create child
objects under this collection”. Thus, create acts on a parent,
containing object while all other privileges act on the object
itself.

Modify

When an object is created, it is assigned the default privi-
leges of create, read, update, delete and modify. To change the
permissions on an object, the user must supply the access
decrypter and have the modify privilege. To change the
modify privilege itself, the user must supply the owner
decrypter. An example of a modify request would be chang-
ing an object from unlimited privileges to read-only.

Grant

Grant and revoke extend the discretionary access control
system by allowing rights to objects to be shared among users
and collections. To issue a grant, the user must supply the
owner decrypter of the access control record for that object. If
the system is able to successfully decrypt both the permis-
sions and the owner encrypted portions of the access record,
the server will process the grant request.

A new access control entry is created, based on the existing
access control entry. The client portion of this entry (locator
and decrypters) will be placed in the requesting user’s public
in-box. When the user again access his or her account, the
in-box will be read by the client and decrypted. The user
object will then be updated by the client with the new access
control information and saved to the database. At this point,
the access control grant is deleted from the user’s in-box.

Revoke

Revocation is the mirror-image of granting access. When a
user has access revoked, his or her corresponding access
control record in the database is invalidated. If the user

10

15

20

25

30

35

40

45

50

55

60

65

20

attempts to use the system to access that record in the future,
the locators and decrypters to the data will now be invalid.
The user will receive a notification, in their public in-box, that
access to a specific object has been revoked. The client will
remove the entry from the user’s internal list of access control
entries and re-save the object Even with a corrupted client
attempting to re-transmit previously valid data will not be
able to access the system No key on the client will decrypt a
valid access control entry in the system any longer.

Database Description

Overview

The database design of Ponoi provides persistent, anony-
mous, encrypted data storage. AU data stored in Ponoi is
encrypted. All primary keys consist of a one-way hash of the
actual primary key name. Only the client application or applet
has the ability to locate and decrypt records. See FIG. 12 for
a general depiction of this data model.

Object Table

All persistent data stored in the system is saved, encrypted,
in the persistent object table. Two types of object exist within
the system: collections and objects. Collections may contain
other collections or an object. One special type of collection
is a user or owner collection. These collections use Ponoi’s
authentication protocol, currently based on a user name and
password, to validate a user’s identity. All other object
requests take place through the access control sub-system.

The assertion column maps to a server AccessRecord or
GroupRecord meta-object. The data column maps to a client
PersistentObject, Collection, Group, User or File object.

Queue Table

All objects contain a ‘public’ inbox that other users in the
system may drop encrypted data into. The encrypter column
contains the key that will encrypt all data put in the inbox. The
verifier is used to challenge the owner for access to view the
queue. No challenge is required to add new messages to a
queue.

The crypto_settings column maps to a server CryptoSet-
tings meta-object.

Message Table

Each public collection may have zero or more public item
children. The encrypter from the parent public collection will
be used by the client to encrypt the data for the public item.
One use of the public inbox for a user is the granting and
revocation of access control rights to other objects or users.

The data column maps to a client Message meta-object.

System Values Table

The system values table holds global data not pertaining to
any user or group’s persistent data. The only current use of
this table is to hold the server, private trust key, used to assure
secure key exchange (see Session.Cryptography above).

Object Meta-Data Description

Overview

Two primary types of data exist encrypted in the database:
persistent objects and access control data. Persistent objects
include binary data, collections and users. Access control data
is used to validate that a given user’s request is allowed under
the owner’s specified permissions. Cryptography protects
both the persistent objects and their associated access control
entries such that the system never has sufficient information
to decrypt both, or to associate a given access control entry
with an object.

Data Objects (FIGS. 13 and 14)

All persistent data in the system, whether a user account,
collection or binary data is stored as a PersistentObject. Each
object must have a name, which is unique within its parent
Collection (if a child object) or the all top-level objects (if a
top-level object). In addition, all objects contain an Objec-

US 9,262,608 B2

21

tRecord, which contains the information needed to locate the
object in the database and the keys to decrypt it.

Each object contains an ObjectRecord. This describes
which database tables the object and its associated access
control data are stored. In addition, the primary key for both
the object and its access record, as well as all persistent
private keys needed to decrypt the data, are stored in the
ObjectRecord. These ObjectRecord entries are also stored in
the children element of a Collection. This way, a parent col-
lection ‘knows’ how to locate all child objects or collections
once decrypted properly.

Any object in the system may have zero of more text
attributes associated with it. A file object, for example, may
store the actual local filesystem location that the file was
uploaded from as well as the unencrypted size of the file.

Collection inherits from PeristentObject. A Collection may
contain other PersistentObject or Collection objects, forming
a hierarchical tree. The children element contains the records
of'these other objects. Each child record must be loaded from
the database separately. Only the ObjectRecord of a given
child is loaded when the object is decrypted. It contains the
information needed to locate and decrypt the object and its
associated access control record. To actually retrieve the
object, a request for the object must be made and access
control validated before the actual object will be returned to
the client.

Access Control Objects (FIGS. 15 and 16)

AccessRecords exist only in the database and On Ponoi
servers. The AccessRecord contains the permissions of for a
given PersistentObject as well as the encrypting keys needed
to re-encrypt the access control record in case of an access
control change request (grant, modify or revoke). The owner-
Encrypter is actually stored encrypted with itself. To assert
ownership over an object, the user must additionally correctly
respond to a challenge using the ownerVerifier, which differs
from the standard verifier.

Any request that furnishes a valid accessDecrypter that
decrypts the access control entry and successfully responds to
a cryptographic challenge from the server allows a permis-
sion check. For create requests, the system checks the parent
collection for the rights to create child objects (create privi-
lege). For other object requests (read, update and delete privi-
leges), the system checks the access control permissions on
the object itself.

For access control modifications (grant, modify and revoke
privileges), the client must correctly respond to an ownership
cryptographic challenge, as above. If successful, then the
owner is allowed to re-save the access control entry or create
a copy to place in another user’s public inbox.

In an alternate embodiment of the invention, the primary
components of Ponoi, the client, Identity Server, and Action
Server, exist as processes on computers. For example, the
client would exist as a code library inside a client application
on a portable digital assistant (PDA). The Identity Server and
Action Server would exist as one or more code libraries or
objects interoperating with a network-based server such as a
database or content management system. In this embodiment,
the functions of protecting session traffic, data storage, and
access control would occur through the intercommunication
of these Ponoi processes residing on multiple computers.

It is apparent from the foregoing that the present invention
achieves the specified objects of providing secure and anony-
mous use of a communications network, as well as the other
objectives outlined herein While the certain specific embodi-
ments of the invention have been described in detail, it will be
apparent to those skilled in the art that the principles of the
invention are readily adaptable to other implementations and

10

15

20

25

30

35

40

45

50

55

65

22

system configurations and communications paradigms with-
out departing from the scope and spirit of the invention, as
defined in the following claims.

What is claimed is:

1. A method for providing private storage of data on a

server within a network, the method comprising:
(a) providing a client application to a client, the client
application being configured to:
identify the data to be stored;
identify an accessing user;
generate a first encryption key and a first decryption key;
encrypt the data at said client using the first encryption
key;

generate a data object identifier;

generate a challenge public-private key pair for the data;

read an identifier for the accessing user;

generate a coded user identifier from the user identifier
by hashing;

send the coded user identifier to the server with a request
for a message queue public key of the accessing user;

receive the message queue public key from the server;

create a message object comprising the data object iden-
tifier, the first decryption key, and the private chal-
lenge key;

encrypt the message object with the message queue pub-
lic key;

send the encrypted message object to a message queue
of'the server associated with the coded user identifier;

create a data object using the data object identifier, the
encrypted data, and the public challenge key;

send the data object to the server;

(b) receiving the coded user identifier and the request for
the message queue public key of the accessing user from
the client application;

(c) identifying the message queue public key associated
with the coded user identifier;

(d) returning the message queue public key to the client
application;

(e) receiving the encrypted data, data object identifier, and
public challenge key from the client application; and
(D) storing the encrypted data in a database using the data

object identifier as a locator.
2. The method of claim 1, further comprising:
(a) providing an accessing client application to the client,
the accessing client application being configured to:
receive an authentication token from the client;
generate a user object identifier based on the authenti-
cation token;

send the user object identifier and a request for a user
object to the server; and

receive the user object from the server;

(b) receiving the user object identifier and the request for
the user object from the accessing client application; and

(c) sending the requested user object to the accessing client
application.

3. The method of claim 2, wherein the accessible client

application is further configured to:

request the message queue from the server;

read the message queue decryption key from the user
object;

decrypt the message object from the message queue with
the message queue decryption key;

read the message object and obtain therefrom the data
object identifier for encrypted data that had been stored
under control of the server;

generate a challenge request;

US 9,262,608 B2

23

forward the challenge request and the data object identifier
to the server;

read the private challenge key from the message object;

decryptthe encrypted challenge using the private challenge
decryption key;

return the unencrypted challenge together with the data
object identifier to the server;

read the first decryption key from the message object;

receive the data associated with the data element; and

decrypt encrypted data associated with the data element.

4. The method of claim 3, further comprising:

receiving the request for the message queue from the
accessing client application;

retrieving the message queue from a database;

returning the message queue to the accessing client appli-
cation;

receiving the challenge request and the data object identi-
fier from the accessing client application;

returning the encrypted challenge to the client application;

receiving the challenge from the accessing client applica-
tion;

matching the challenge received with the challenge sent;

retrieving an encrypted data element associated with the
data object identifier; and

sending the encrypted data element to the accessing client
application.

10

15

20

25

24

